PCB电磁兼容设计原则
电子产品的电磁干扰及电磁辐射问题日益引起人们的关注。电磁环境对人类生存环境产生影响的同时,也对电工、电子产品的安全与可靠性产生影响和危害,电磁干扰导致电工、电子产品性能下降、无法工作甚至产品损坏的情况时有发生,因此控制产品的电磁辐射,让电子设备的电磁兼容等综合性能指标达到规定要求变得非常重要。
一、电磁兼容的概念与意义
1.1电磁兼容的概念
电磁兼容(Electro-Magnetic Compatibility,EMC)指设备在共同的电磁环境中能一起执行各自功能的共存状态,即该设备不会由于受到处在同一电磁环境中其他设备的电磁发射导致或遭受不允许的降级,它也不会使其他设备因受其电磁发射而导致不允许的降级。
1.2电磁兼容的重要性
印制电路板(PCB)是电子产品中元器件的支撑体,并提供电路元器件间的电气连接,因此PCB设计的好坏对抗干扰能力影响很大。现代电子产品发展趋势越来越小型化、多功能和高智能化,势必导致设计与生产越来越多地采用更小型、高集成度、高频的元件,电磁兼容的难度也越来越大。通过采用正确的设计方案和布线技术可以有效降低印制电路板的电磁辐射,提高本身的抗干扰性和电路工作的稳定性。
在产品研发出来后,发现不能通过电磁兼容测试而添加的诸如加屏蔽罩、磁珠等措施,往往是事倍功半。因此在一开始设计时就要结合电磁兼容思想,最好对设备的电磁兼容性程度进行先期分析。
在印制板上采取技术措施,比在其他方面采取措施更具有可靠性、稳定性和经济性。
二、印制电路板电磁兼容设计原则及其实例分析
2.1印制电路板的层数、尺寸选择原则
单面板和双面板一般适用于低、中密度的电路,多层板适用于高密度布线、高速电路、数模混和电路。印制电路板的尺寸选择应根据原理图和所使用器件尺寸、相互间影响决定。最好选择适中的尺寸。尺寸太长,导电线路就长,阻抗增加,抗噪声能力下降。而尺寸太小,器件密集,不利于散热,而且连线密集,容易产生干扰。
2.2器件布局原则与实例
根据电路原理的功能单元,对电路的全部元器件进行放置。
(1)对元器件分区。可以按不同的电源电压分区,或按数字电路和模拟电路分区,或按高速和低速电路分区。让同种电源、同速度、同频率的器件放置在一起,减小了不同组器件混放产生的相互间干扰。在印制板上,不同组的器件区间有一定的分割。如高压与低压区间以变压器为分割,保持3 mm~5 mm的爬电距离。模拟电路与数字电路往往分别采用两种电源与地面,应分别与电源连接器的地线相连,在分割线上采用磁珠或电感跨接。
(2)相应地,元件的位置分区决定了连接器的分布,引出管脚安排要与元件分割一致,尽量减少不同信号环路、电源环路的重叠和干扰。
(3)所有的连接器最好放在电路板的一侧,避免从两侧引出。因为存在共模辐射的情况下,电缆相当于一个很好的共模发射天线,电缆在两侧比在同一侧辐射要大得多。
输入输出I/O驱动器应该紧靠连接器,I/O信号从连接器进入后,应马上进入I/O驱动器。不要在印制板上走较长距离,以免耦合上干扰信号。而高速数字芯片,当与连接器没有信号交换时,应放在远离连接器处。高速数字信号有可能通过电场、磁场耦合,产生干扰,并通过电缆向外发射。当高速器件的信号必须连接连接器时,则尽量靠近相关连接器,缩短走线长度,避免对其他中低速电路的干扰。
2.3地线与电源线的设计原则与实例分析
地线设计是印制电路板中不可忽视的问题,往往也是难度最大的一项设计。“地线”可以定义为信号流回源的低阻抗路径,在理论上应是零电阻的实体,各接地点之间没有电位差。实际上,地线有阻抗、有干扰,电流通过时,必然会产生电压降,地环路干扰电压在信号上产生干扰电流,叠加在有用信号上。这时的地线设计需考虑以下因素。
(1)地线设计时应考虑分成不同的系统地、机壳地、数字地、模拟地等。分地目的在于防止共地线阻抗耦合干扰。但并不是完全地隔离,没有任何电气连接。各地线在适当的位置,还是要有单点的电气连接,保持地面的连续性。
(2)靠近接口部分的印制板地面要分割出来,作为专用的EMC地,也称机壳地。EMC地上必须没有数字信号回流,与机壳良好搭接,搭接阻抗尽可能地小。可采取多点搭接方式,保证EMC地与机壳相同电位。实际应用上,一般将I/O插座固定焊盘、板固定孔与EMC地信号走线连接,安装时通过固定螺钉将机壳与PCB板良好连接。
EMC地与数字地保持单点连接。连接器处的每条I/O线都要分别并联去耦电容到EMC地,如表面安装式电容,使去耦电路的电感越小越好。外部干扰如果通过接口侵入,则在EMC地区域就被去耦电容旁路到了机壳上,从而保护了内部电路正常安全工作。同样,印制板的干扰电流在输出前也被去耦电容旁路了。
(3)双面板的数字地通常采用梳状结构和网状结构。梳状结构,其信号环路面积相当大。而网状结构是在梳状的基础上,在板正面加上几条垂直地线,交叉点打上金属化过孔连通。地线网格提供了大量的平行地线,能够有效地减小地线环路面积,减小了地线噪声。
(4)电源线与地线要结合一起考虑。为减少供电用导线对的特性阻抗,电源线与地线应尽可能的粗,并且相互靠近,使供电环路面积减小到最低程度。电源线与地线在板两侧重叠走线,形成一对导线对,效果比电源线与地线在同侧平行走线好。同一芯片的电源与地管脚,应连接到同一导线对。在实际布线中,并不是简单将各芯片地脚、电源脚就近连到粗的平面就行了,而要仔细区分其形成的回流环路是否最小。如连到不同的电地线对,有可能使高频电流在PCB板的两个斜对角流动,大大增加了环路面积。
(5)高频去耦电容与大容量钽电容的使用。数字电路中,当逻辑门状态变化时,会在电源上产生一个很大地尖峰电流,形成瞬间的噪声电压。这种情况普遍采用去耦电容,它为芯片提供了所需的电流,并且将电流变化局限在较小的范围内,减小了辐射。因此在每片芯片的附近加上高频去耦电容,容量约为0.01μf~0.1μf,一般是它所补充的电容容量的10倍以上。
①采用钽电容,而不要使用铝电解电容,后者具有较大的内部电感;②电容距离芯片越近越好;③去耦电容的引线不宜太长。用钽介质做成的大容量电容能存储大量能量,以保证开关元器件所需的电压和电流,通常在如下位置每两个大规模和超大规模芯片用一个大容量电容器(10μf~100μf):①产生时钟信号的电路附近②PCB板上的电源接口③功耗电路和元件附近④远离直流电源输入处而元器件放置密度较高的地方。
(6)地平面上的缝隙的影响。电流总是走阻抗最低的路径,低频的时候,信号走电阻最小的路径,即直线距离。高频的时候,信号走电感最小的路径,即信号线正下方的地线。因为此时的环路面积最小,环路的电感与环路面积成正比。最佳状态是地面上没有较大的缝隙。实际上不可能有很完整的理想地面。
如果高频时钟线跨过地面隔缝,则回流线被迫A-B方向绕过隔缝。增加了高频环路的面积,增加向空间的辐射干扰,同时也易受空间磁场的干扰。由于环路电感增大,输出时钟波形易产生振荡。处理办法是在关键线的正下方增加一根横跨地线C,保持较小的信号环路。
(7)随意铺设的地铜箔并没有用。判断一个地线有没有用,首先看它能否起到减小信号环路的作用。布线中盲目采用大面积铺地,将线路板两侧的空白全部填上,这样并没有起到屏蔽抗干扰的作用。电流总是走阻抗最小的路径,做不到减小环路面积,就不能起到良好的抗干扰效果。
同样,为提高抗干扰能力,在主芯片组、高速芯片、时钟芯片、晶阵、功耗元件下我们总是尽可能地在器件下方两面都铺上地,并布满通孔。
(8)悬空的金属应该接地。悬空的金属,特别是大面积的金属分布电容大,容易产生电场耦合。金属构件间如果有电位差,就可能产生共模辐射,所以必须把它们良好接地。如散热片、屏蔽罩、金属支架、印制板上孤立的铜箔等都应该就近接地。
结语
本文按照器件布局、地线与电源处理、时钟信号线处理等对设计经验和原则进行了分类总结,除此之外,印制电路板的电磁兼容性设计还与具体电路有着密切的关系,在设计中还应根据具体电路作相应处理,灵活运用抗干扰的各种方法,才能最大程度地满足电磁兼容的要求。
以上就是我们深圳市组创微电子有限公司为您介绍的PCB电磁兼容设计原则及其实例分析。如果您有智能电子产品的软硬件功能开发需求,可以放心交给我们,我们有丰富的电子产品定制开发经验,可以尽快评估开发周期与IC价格,也可以核算PCBA报价。我们是多家国内外芯片代理商:松翰、应广、杰理、安凯、全志、realtek,有MCU、语音IC、蓝牙IC与模块、wifi模块。我们的拥有硬件设计与软件开发能力。涵盖了电路设计、PCB设计、单片机开发、软件定制开发、APP定制开发、微信公众号开发、语音识别技术、蓝牙wifi开发等。还可以承接智能电子产品研发、家用电器方案设计、美容仪器开发、物联网应用开发、智能家居方案设计、TWS耳机开发、蓝牙耳机音箱开发、儿童玩具方案开发、电子教育产品研发。
精选方案推荐
- 返回顶部